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Critical adsorption near edges
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Symmetry breaking surface fields give rise to nontrivial and long-ranged order parameter profiles for critical
systems such as fluids, alloys, or magnets confined to wedges. We discuss the properties of the corresponding
universal scaling functions of the order parameter profile and the two-point correlation function, and determine
the critical exponentsh i andh' for the so-called normal transition.@S1063-651X~99!00411-0#

PACS number~s!: 64.60.Fr, 68.35.Rh, 61.20.2p, 68.35.Bs
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I. INTRODUCTION

Advanced experimental techniques have emerged w
allow one to endow solid surfaces with stable geometr
structures which display a well-defined design on the scal
nanometers or micrometers. Lateral geometric structures
be formed by using various lithographic techniques such
e.g., holographic@1#, x-ray ~LIGA ! @2#, soft @3#, and nano-
sphere lithography@4#. These microfabrication technique
provide routes to high-quality patterns and structures w
lateral dimensions down to tens of nm. These structures
either periodic in one lateral direction, consisting of groov
with various shapes of the cross section~e.g., wedgelike!, or
they display periodicity in both lateral dimensions.

These manmade surfaces offer a wide range of poss
applications if they are exposed to fluids. In that case
surfaces act as a template with a designed topography w
imposes specified lateral structures on a fluid. For exam
in the context of microfluidics@5,6# these geometrical struc
tures can be used as guiding systems in order to deliver
amounts of valuable liquids to designated analysis center
a solid surface as part of microscopic chemical factories@7#.
Besides the numerous experimental challenges assoc
with these systems, there is also the theoretical challeng
understand the corresponding highly inhomogeneous fl
structures~and ultimately the flow dynamics! as well as to
guide the design on the basis of this insight@8#.

In view of this goal the study of the fluid structures in
single wedgelike groove with opening anglea serves as a
paradigmatic first step. Fora5p the geometry reduces t
the well-studied case of a planar substrate. For decrea
values ofa the fluid is squeezed, whereas fora.p a ridge-
like solid perturbation is projected into the fluid. Due to t
unbound accessible space for all values ofa, the bulk prop-
erties of the fluid are unchanged by the presence of
wedge.~This is an important difference as compared w
pores in which the confinement alters the bulk properties.! At
low temperatures one finds pronounced packing effects
the fluid particles near the corner of the wedge which dif
significantly from those encountered at planar surfa
@9–11#. Even stronger effects occur if the wedge is expos
to a vapor phase. In this case a liquidlike meniscus is form
at the bottom of the wedge which undergoes a filling tran
tion at a temperatureTa below the wetting transition tem-
peratureTW of the corresponding planar substrate@12–15#. It
PRE 601063-651X/99/60~5!/5163~12!/$15.00
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has been demonstrated that x-ray scattering experimen
grazing incidence are capable of resolving such interfa
structures@16,17#.

If the temperature is increased sufficiently above the tri
point of the fluid one encounters its bulk critical pointTc .
This can be either the liquid-vapor critical point of the flu
or the demixing critical point if the fluid is a binary liquid
mixture. The experience with planar surfaces tells@18,19#
that at bulk criticality the confinement triggers interesti
new surface critical phenomena. In this case the local or
parameterf is perturbed near the surface within a lay
whose thickness is governed by the diverging bulk corre
tion length j6(t→0)5j0

6utu2n, where t5(T2Tc)/Tc ; n
denotes the universal bulk critical exponent andj0

6 is the
nonuniversal amplitude above (1) and below (2)Tc . Thus
at Tc the perturbation due to the surface intrudes deeply i
the bulk.

In order to extend our knowledge of the structure of co
fined fluids to these elevated temperatures, we set ou
investigate the aforementioned surface critical phenomen
a wedge. Based on analytic calculations@20–27# and com-
puter simulations@28,29#, the local critical behavior in a
wedge has been analyzed for the case that the correspon
planar surface exhibits the so-calledordinary or specialsur-
face phase transitions@18,19#. In the corresponding magneti
language the ordinary phase transition corresponds to
case that the couplings between the surface spins remain
low the threshold value of the multicritical special transitio
beyond which the surface can support long-ranged or
even aboveTc @18,19#, and in which there are no surfac
fields. The ordinary transition has also been studied for
ferent shapes of the confinement such as parabolic ones@30–
32#. The main concern of these studies has been critical e
exponents describing the leading critical behavior of the
der parameter near the corner, which differs from that
planar surfaces and in the bulk. One finds that in general
edge exponents depend on the opening anglea. These stud-
ies aim at describing magnetic systems in the absenc
surface fields, as they are experimentally accessible, e.g
scanning electron microscopy@33#.

However, the aforementioned surface and edge univer
ity classes are not applicable in the present context of c
fined fluids. For example, in a binary liquid mixture one
the two species will prefer the confining substrate more th
the other, which results in an effective surface field act
on the order parameter given by the concentrat
5163 © 1999 The American Physical Society
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difference between the two species. Similar arguments h
for a one-component fluid near liquid-vapor coexistenc
These surface fields give rise to another surface universa
class, the so-callednormal transition @18,19#. This differs
from the ordinary and special transitions discussed above
that these symmetry breaking surface fields generate a n
trivial order parameter profile even if the bulk is in the di
ordered phase, i.e., forT>Tc . For a planar surface this give
rise to the well-studied so-calledcritical adsorptionphenom-
enon ~see, e.g., Refs.@18,19,34–38#!. Here we extend the
corresponding field-theoretical analysis for the normal tra
sition to the wedge geometry under consideration. After p
senting our model and discussing general scaling proper
~Sec. II! we analyze the order parameter profile in Sec.
and the structure factor in Sec. IV. By focusing on the cri
cal temperatureT5Tc we are able to obtain analytical re
sults. They are summarized in Sec. V. Appendixes A and
contain important technical details needed in Secs. III a
IV.

Experimentally, wedges are characterized by a fin
depthL. Moreover, in many cases they are manufactured
a laterally periodic array of parallel grooves and ridges. T
structural properties of a fluid exposed to such a perio
array depend sensitively on the ratioL/j of the depth and
the correlation length. ForL/j!1 the system will resemble
a critical fluid exposed to a mildly corrugated substra
which is expected to give rise to corrections to the leadi
critical adsorption behavior at a planar substrate. ForL/j
@1 near the tip of a ridge and near the bottom of a groo
the presence of their periodic duplicates becomes irrelev
so that in this limit the edge singularity of a single edge wi
a.p and a,p, respectively, will prevail. Our presen
study deals with the limitL→` andj→` taken such that
L/j@1. Certainly, in a later stage it will be rather rewardin
also to study the crossover regimeL/j'1 in which the
grooves and the ridges as well as the way they are join
together play an equally important role. The occurrence
the unbending transition in the case of wetting on corruga
substrates@39# indicates that the regimeL/j'1 might ex-
hibit rather interesting new phenomena.

II. MODEL AND GENERAL RESULTS

Our investigation is based on the Ginzburg-Land
HamiltonianH determining the statistical weight exp(2H)
for a scalar order parameterf which represents a critica
system within the Ising universality class. According to th
wedge geometry,H is given as a sum of three contribution
i.e., H5Hb1Hs1He , which refer to the bulk (b), the sur-
face (s), and the edge~e! contributions, respectively. In cy-
lindrical coordinatesr5(r ,u,xi) ~see Fig. 1!, the individual
contributions are given by

Hb@f#5E
0

a

duE
0

`

dr r E dd22xi H 1

2
~¹f!21

t

2
f21

g

4!
f4J ,

~2.1a!

Hs@f#5E
0

`

drE dd22xi H c1

2
@f~r ,0,xi!#

22h1f~r ,0,xi!

1
c2

2
@f~r ,a,xi!#

22h2f~r ,a,xi!J , ~2.1b!
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He@f#5E dd22xi H ce

2
@f~0,0,xi!#

22hef~0,0,xi!J ,

~2.1c!

whered is the space dimension andxi parametrizes the (d
22)-dimensional subspace parallel to the edge along wh
the system is translationally invariant. The bulk Hamiltoni
Hb given by Eq.~2.1a! represents the standard Ginzbur
Landauf4 model in the absence of external bulk fields. T
bulk parametert is proportional to the reduced temperatu
t5(T2Tc)/Tc , g is the bulk coupling constant, anda de-
notes the opening angle. The surface HamiltonianHs given
by Eq. ~2.1b! captures the effect of the two semi-infinit
planar surfaces forming the geometric boundaries of
wedge located atu50 andu5a, respectively. Note thatHb
and Hs take their standard fixed-point form with a surfa
enhancementci and a surface fieldhi for each of the surfaces
i 51 and 2. Cubic surface fields@34# will be disregarded
here. The surfaces meet at the opening anglea along the
edge of the wedge which gives rise to the third contribut
He . The edge HamiltonianHe given by Eq.~2.1c! has the
same structure as the surface contributionHs , and is char-
acterized by an edge enhancementce and an edge fieldhe
@19#. The total HamiltonianH constitutes a renormalizabl
model ~see Sec. IV A 3 in Ref.@19#!.

In this investigation we are exclusively concerned w
the normal transition which is characterized by nonzero v
ues of all surface and edge fieldsh1 , h2, andhe and arbitrary
values of the surface enhancementsc1 andc2 and of the edge
enhancementce . For nonzero fieldsh1 or h2 the system is
orderedat any finite point even forT.Tc . Asymptotically
close to the critical pointTc , the universal properties of th
corresponding order parameter profile are linked to thecriti-
cal adsorption fixed pointof the corresponding renormaliza
tion group description. The ensuing scaling functions refe
the scaling limitsr→` and j→`, where the ratior /j is
kept fixed forming a finite scaling variable.At the critical

FIG. 1. Cross section of a wedge perpendicular to its edge w
opening anglea. The system is translationally invariant in the (d
22)-dimensional subspace parallel to the edge. The curve lab
‘‘ M5const’’ represents a contour line of the order parameter p
file ~see Sec. III B!. r and 0<u<a are cylindrical coordinates.z
5r sinu is the normal distance from the surface of the wedge. T
dashed lines are the asymptotes of the contour lineM5const which
are a distancez0 apart from the surface.R5z0 /sin(a/2) is the dis-
tance between the intersection of the asymptotes and the edge o
wedge.Dr 1R is the distance between the contour line in the cen
and the edge. The contour line approaches the asymptotes suc
d(y→`)→0 and d(y50)5Dr sin(a/2), where y measures the
distance along the wall.
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adsorption fixed point the surface fields are infinitely larg
so that the order parameter profile

M ~r ,u,t;a![^f~r ,u,xi!& ~2.2!

diverges at the surfacesu50 andu5a of the wedge accord
ing to a power law.~We recall that such divergences refer
the renormalization group fixed point, whereas actually
divergence of the order parameter profile is cut off at atom
distances from the surfaces.! Consequently, at this so-calle
normal transition the surfaces can differ at most with resp
to the sign of the fields. In the following we assume that
surface fields have the same sign, and we denote this
figuration as~1,1!. Note that onlyHb in conjunction with
the aforementioned boundary conditions is left to determ
the functional form of the order parameter profile.

Close to the critical pointTc , the order parameter profil
takes the scaling form

M ~r ,u,t;a!5autubP6~r /j6 ,u;a!, ~2.3!

where j65j0
6utu2n with t5(T2Tc)/Tc:0 is the correla-

tion length, andP6(z6 ,u;a) are the corresponding scalin
functions with the scaling variable

z65r /j6 . ~2.4!

The amplitudea in Eq. ~2.3! is the nonuniversal amplitude o
the bulk order parameterMb5autub, T,Tc , whereb is the
corresponding bulk critical exponent. The scaling functio
P6 are universal and have the limiting behaviorsP1(z1

→`,u;a)→0 andP2(z2→`,u;a)→1, respectively. Note
thatP1 andP2 are universal but depend on thedefinitionof
the correlation lengthj6 , becausej6 enters the scaling ar
gumentz6 . In the opposite limitz6→0, i.e., T→Tc , the
scaling functionsP6 exhibit short-distance singularities i
form of power laws which reflect the anomalous scaling
mension of the order parameterf:

P6~z6→0,u;a!5 C̃6~u;a!z6
2b/n . ~2.5!

The ratio b/n of critical exponents has the values 1 ind
54, .0.5168 ind53 @40#, and 1/8 ind52. Equation~2.5!
implies a power law dependence onr for the order paramete
profile at criticality:

M ~r ,u,t50;a!5aC̃6~u;a!~r /j0
6!2b/n. ~2.6!

The scaling functionsC̃6(u;a) appearing in Eqs.~2.5! and
~2.6! are universal but depend on the definition of the cor
lation length because they are derived fromP6 . @However,
the productC̃6(j0

6)b/n is invariant with respect to differen
choices for the definition of the bulk correlation length.# In
order to be specific we choose as the definition forj the
so-calledtrue correlation length which governs the decay
the two-point correlation function in the bulk system@37#.
Equation~2.6! implies the relation

C̃1~u;a!/ C̃2~u;a!5~j0
1/j0

2!2b/n ~2.7!

between the scaling functionsC̃6 involving the universal ra-
tio j0

1/j0
2 .
,

e
c

ct
e
n-

e

s

-

-

In the limit a5p the wedge geometry coincides with th
semi-infinite geometry. In this limit the universal scalin
functionsC̃6 reduce to

C̃6~u;a5p!5c6~sinu!2b/n, ~2.8!

where the universal amplitudesc6 with c1 /c2

5(j0
1/j0

2)2b/n govern the critical adsorption profile at a pla
nar surface@37#, so that

M ~r ,u,t50;a5p!5M`/2~z5r sinu,t50!

5ac6~z/j0
6!2b/n ~2.9!

yields the order parameter profileM`/2 in the semi-infinite
system at criticality. The profileM`/2(z0 ,t50) at a refer-
ence distancez0 from the surface can be used in order
construct the ratio

M ~r ,u,t50;a!

M`/2~z0 ,t50!
5C~u;a!r2b/n, r5r /z0 , ~2.10!

which is independent of the nonuniversal amplitudesa and
j0

6 . Here we have introduced the length ratior5r /z0 and
the scaling function

C~u;a![ C̃1~u;a!/c15 C̃2~u;a!/c2 . ~2.11!

We note thatC is not only universal but also independent
the definition for the correlation length, because the left-ha
side of Eq. ~2.10! and r are expressed in terms of orde
parameter profiles and distances, respectively, without
sorting to the notion of the correlation length.

In the limit that the normal distancez5r sinu from the
surface of the wedge is much smaller thanr, i.e., for u→0
with r fixed, the order parameter profile reduces to the pla
semi-infinite behavior

M ~r ,u,t50;a!5ac6~z/j0
6!2b/n

→ac6u2b/n~r /j0
6!2b/n, u→0,

~2.12!

so that Eqs.~2.9! and ~2.10! imply

C~u→0;a!→u2b/n, C~u→a;a!→~a2u!2b/n,
~2.13!

where we have used the symmetry property

C~u;a!5C~a2u;a!. ~2.14!

III. ORDER PARAMETER PROFILE AT Tc

At the critical point the radial dependence of the ord
parameter profile in the wedge is given by the power l
r 2b/n @see Eq.~2.6!#. The dependence of the profile onu is
captured by the universal amplitude functionC(u;a) @see
Eq. ~2.10!#, which in d52 is determined by conformal in
variance arguments~see Sec. III D!. In d.2, however, one
has to resort to explicit field-theoretical calculations, assu
ing that the amplitude functionC, as other universal quanti
ties, is a smooth function of the spatial dimensiond. In the
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following we focus on the corresponding mean-field desc
tion, i.e., lowest order perturbation theory within the fiel
theoretical approach. The mean-field results become exa
the upper critical dimensionduc54 of the field theory de-
scribed by Eq.~2.1!, i.e., for d↗4. In order to provide an
estimate for the order parameter profile ind53 we shall use
the exact results ind52 and the mean-field results ind54
for an interpolation scheme betweend52 and 4, where the
correct scaling arguments and short-distance singularities
implemented. For the order parameter profile studied here
shall use the valueb/n.0.5168@40# in d53 instead of the
mean-field valueb/n51. Thus only the amplitude function
is treated in lowest order perturbation theory.

A. Mean-field theory

Within mean-field theory it is convenient to introduce t
reduced profile

m~r ,u,t;a![Ag/12M ~r ,u,t;a!; ~3.1!

m(r ,u,t;a) is determined by the Euler-Lagrange equatio

F ]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]u2Gm5tm12m3 ~3.2!

for r .0 and 0,u,a. The divergences of the profilem near
the surfaces and the edge of the wedge account for the e
of the surface and edge parts of the Hamiltonian in the (1,
1) configuration considered here. Fort50, Eq. ~3.2! im-
plies, for the universal amplitude function

C~u;a!5rm~r ,u,t50;a!, ~3.3!

@see Eq.~2.10!, hereb/n51# the equation

]2

]u2 C~u;a!52C~u;a!12@C~u;a!#3. ~3.4!

Equation~3.4! leads to exact results forC in the limit d↗4.
Note that Eq.~3.4! can readily be solved using the ord
parameter profile obtained for afilm geometrywith (1,1)
boundary conditions@41#. Specifically, Eq.~3.4! is equiva-
lent to the Euler-Lagrange equation for a film with thickne
L as given by Eq.~A3! in Ref. @41# if the rescaled tempera
ture tL2 there is replaced by2a2. The expressionu/a for
the wedge corresponds toz/L for the film. The solution of
Eq. ~3.4! can be expressed by the Jacobian elliptic functio
sn and dn,

C~u;a!5
1

A122k2~a!

dn„u/A122k2~a!;k~a!…

sn„u/A122k2~a!;k~a!…
,

0<a<p, ~3.5a!

in terms of the modulusk of the complete elliptic integra
K(k) of the first kind~see Appendix A!, wherek5k(a) is
implicitly given by

a52K~k!A122k2, 1/2>k2>0, ~3.5b!

@see Eqs.~A12! and ~A13! in Ref. @41## and
-

at

re
e

ect

s

s

C~u;a!5
1

A11k2~a!

1

sn„u/A11k2~a!;k~a!…
,

p<a<2p, ~3.6a!

where nowk5k(a) is implicitly given by

a52K~k!A11k2, 0<k<kmax.0.90953 ~3.6b!

@see Eqs.~A14! and~A15! in Ref. @41##. In the following we
consider only the case 0<a<p; according to Eq.~3.6!, the
extension to the casep<a<2p is straightforward. Note
that the parametrizations of the opening anglea as given by
Eqs. ~3.5b! and ~3.6b! are monotonous functions of th
modulus k, and therefore the inverse functionk(a) is
uniquely defined but cannot be expressed in closed form
general. The special casea5p corresponds tok(a5p)
50 so that C(u;a5p)51/sinu, which reproduces the
mean-field result for the order parameter profile in the se
infinite geometry at the normal transition expressed in po
coordinates@see Eqs.~2.8! and ~2.11!; here b/n51#. The
shape ofC(u;a) for d52 @see Eq.~3.24! in Sec. III D# and
d54 @see Eq.~3.5!# for fixed opening anglesa5p/2 and
p/4 is shown in Fig. 2, where the divergences atu50 and
u5a according to Eq.~2.13! have been split off. As an
estimate ford53, in Fig. 2 we show the linear interpolatio
between the corresponding curves ford52 and 4.

B. Contour lines of the order parameter profile

One of the motivations for our investigation of criticalit
in the wedge geometry is the frequent use of grooved s
strates as templates to impose inhomogeneous structure
liquids. In the wedge geometry the density~or concentration!
of the adsorbed critical fluid is inhomogeneous within plan
perpendicular to the edge. The intersection of these pla
with surfaces of constant order parameterM (r ,u,t50;a)
5M0 renders the contour linesr 5r (u;a,M0) of the order
parameter profile, which characterize the inhomogene

FIG. 2. Universal scaling functionC(u;a) @see Eq.~2.10!# as
function of the polar angleu for fixed opening anglesa5p/2 and
a5p/4 ~compare Fig. 1!. The divergences atu50 andu5a are
split off @compare Eq.~2.13!#. The curves ford53 show the linear
interpolation between the corresponding exactly known curves
d52 @see Eq.~3.24!# andd54 @see Eq.~3.5!#. Note that the shape
of the curve ford52 is independent ofa for 0,a,p.
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PRE 60 5167CRITICAL ADSORPTION NEAR EDGES
shape of the order parameter configuration in the wedge.
away from the center of the wedge the order parameter
file approaches the profile for a planar substrate so that
contour lines asymptotically become straight lines paralle
the surfaces forming the wedge~compare Fig. 1!. As ex-
pected, the deviation of the contour lines from these para
straight lines is largest in the center of the wedge. The n
malized order parameter profile defined by the left-hand s
of Eq. ~2.10! yields the contour lines

r ~u,a!

z0
5@C~u;a!#n/b, ~3.7!

where for a given contour line the reference distancez0 is
fixed by the asymptotic distance of this contour line from t
wedge surface, i.e., byM05M`/2(z0 ,t50) ~see Fig. 1!.
Thus the angular dependence ofeverycontour line exhibits
the same universal shape in units of the correspondi
asymptotic distancez0. Equations~2.13! and~3.7! imply that
r (u→0,a);u21 independent ofd anda.

Within mean-field theory~for which b/n51) we obtain
from Eq. ~3.5! in the center of the wedge, i.e., foru5a/2,

r ~u5a/2,a!

z0
5C~u5a/2;a!5

A12k2~a!

A122k2~a!
, d54.

~3.8!

According to Fig. 1 the distanceR of the intersection of the
asymptotes from the edge is given byR5z0 /sin(a/2) which
implies for the deviationDr 5r 2R of the contour line at the
center of the wedge:

Dr 5F A12k2~a!

A122k2~a!
2

1

sin~a/2!Gz0 , d54. ~3.9!

In order to discuss Eq.~3.9!, we first consider a very wide
wedge, i.e., the limita→p for which k2→0. In this limit
the deviationDr decays according to@see Eqs.~3.5b! and
~A2!#

Dr

z0
5

2

3S 12
a

p D1S 5

6
2

p2

8 D S 12
a

p D 2

1OS S 12
a

p D 3D ,

d54. ~3.10!

In the opposite limit of a very narrow wedge, i.e., fora
→0, the deviationDr of the contour line in the centerdi-
vergesaccording to

Dr

z0
5

V

a
1O~a!, d54, ~3.11!

whereV5A2K(1/A2)22.0.622. This shows that the con
tour lines are expelled from the wedge into the bulk for sm
opening angles. The overall behavior ofDr for 0<a<p for
d52 @see Eq.~3.26! in Sec. III D# andd54 @see Eq.~3.9!#
is shown in Fig. 3. Again, the curve ford53 represents the
estimate obtained by the linear interpolation between
curves ford52 and 4~compare Fig. 2!.
ar
o-
he
o

el
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e

ll

e

C. Distant wall corrections

Far away from the center of the wedge the contour lin
of the order parameter profile approach straight lines wh
are parallel to the wedge surfaces~compare Fig. 1!. This
implies that in this limit the deviation of the order parame
profile from the corresponding profile in a semi-infinite g
ometry becomes small. This small deviation can be int
preted in terms of the so-called distant-wall correction wh
is obtained from theshort-distance expansion@42–46# of the
order parameter near, say, the surfaceu50 of the wedge.
For any scaling operatorC the short-distance expansion
the normal transition can be written as

C~r ,u,xi!5^C~r ,u,xi!&`/2@11bCTuu~r ,0,xi!~ru!d

1O~ud12!#, ~3.12!

where Tuu5T'' denotes the stress tensor componentper-
pendicularto the wall atu50 andru!ra is the small dis-
tance from the wall. For the order parameter profileM
5^f& from Eq. ~3.12! we infer

M ~r ,u;a!5M ~r ,u;p!@11Bfud1•••#, ~3.13!

in analogy to the short-distance expansion of the order
rameter profile in the film geometry@47#, where Bf
5bf^Tuu&r

d. From the general expression of the stress t
sor at criticality@see Eq.~3.1! in Ref. @46##, in polar coordi-
nates we obtain

Tuu5
1

2r 2 S ]f

]u D 2

2
1

2 S ]f

]r D 2

2
1

2
~¹ if!22

g

24
f4

1
d22

4~d21! F ]2

]r 2 f21D if
2G ~3.14!

FIG. 3. Universal dependence of the deviationDr 5r 2R in
units of the reference distancez0 of the contour line at the center o
the wedge~compare Fig. 1! on the opening anglea. The curve for
d53 shows the linear interpolation between the exactly kno
curves ford52 @see Eq.~3.26!# and d54 @see Eq.~3.9!#. Dr is
multiplied by a so that the productaDr attains a finite value for
a→0 @see Eq.~3.28! for d52 and Eq.~3.11! for d54; we assume
in addition that the power lawDr (a→0);a21 remains valid for
2,d,4#.
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up to contributions of the orderg3, where¹ i andD i denote
the components of the gradient and the Laplacian along
edge, respectively.

Within mean-field theory the thermal average of E
~3.14! is obtained by settingd54 and replacingf by ^f&
5A12/g m @see Eqs.~3.1! and ~3.3!#. Since the result is
independent ofu we can use the fact that the order parame
profile is symmetric around the midplaneu5a/2 in order to
obtain

^Tuu&5
6

gr4@@C~a/2;a!#22@C~a/2;a!#4#, d54.

~3.15!

From Eq.~3.5! we thus find

^Tuu&52
6

gr4

k2~a!@12k2~a!#

@122k2~a!#2 , d54, ~3.16!

which exactly corresponds tôTzz& in the film geometry with
(1,1) boundary conditions@see the first line of Eq.~3.4! in
Ref. @41# for y521]. If Eq. ~3.16! is inserted into Eq.~3.12!
for C5f the structure of the distant-wall correction as giv
by Eq. ~3.13! is confirmed. However, for a complete iden
fication the amplitudebf must be determined. Within th
present mean-field approach Eq.~3.13! can directly be veri-
fied by expanding Eq.~3.5! for u→0 with a fixed. From the
expansions of the Jacobian elliptic functions@see Eq.~A6!#
we obtain

m~r ,u;a!5m~r ,u;p!F11
k2~a!@12k2~a!#

@122k2~a!#2 S u4

10
2

u6

105D
1O~u8!G , d54, ~3.17!

from which one can read offbf52g/60 within mean-field
theory. The next-to-leading correctionO(u6) in Eq. ~3.17! is
generated by the operatorD rTuu whereD r denotes the radia
part of the Laplacian in polar coordinates (r ,u,xi). In gen-
eral the corresponding correction isO(ud12) as indicated in
Eq. ~3.12!. In principle D iTuu also yields a contribution to
the short-distance expansion, but one hasD i^Tuu&50 due to
the translational invariance along the (d22)-dimensional
edge. We note that in thefilm geometrythe counterpart of the
operatorD rTuu in the wedge doesnot contribute to the next-
to-leading distant-wall correction of the order parameter p
file due to the translational invariance in the film. Therefo
in the film the next-to-leading correction is given by th
operator (T'')2, which gives rise toO(u2d) corrections
only. The latter operator also appears in the wedge geom
and gives rise to theO(u8) corrections indicated in Eq
~3.17!.

The distant-wall correction has an interesting geome
interpretation. The contour lines of the order parameter p
file in the wedge and in the semi-infinite geometry, resp
tively, belonging to the same valueM0 of the order param-
eter, are displaced by an amountd(y;a) where d1z05z
5r sinu and the distancey is related tou by ~compare
Fig. 1!
e

.

r

-

try

c
-
-

y5y~u,a!5r ~u,a!cosu2@R~a!1Dr ~a!#cos~a/2!.
~3.18!

Within mean-field theory, for the above choice ofM0 @see
Eq. ~3.7!, hereb/n51] and usingr /z05C(u;a), one ob-
tains

d„y~u,a!;a…

z0
5C~u;a!sin~u!215

m~r ,u;a!

m~r ,u;p!
21, d54.

~3.19!

According to Eqs. ~3.13! and ~3.19! the ratio
d(y(u,a);a)/z0 as a function ofu represents the distant
wall correction of the order parameter profile. Its leadi
terms can be read off from Eq.~3.17!. For generald one has
@see Eq.~3.7!#

d„y~u,a!;a…

z0
5@C~u,a!#n/bsin~u!21, ~3.20!

so thatd/z0→(1/6)@(p/a)221#u2 for d52 andu→0 @see
Eq. ~3.24! in Sec. III D#. The behavior ofd(y,a) as function
of y for fixed opening anglesa5p/2 andp/4 is shown in
Fig. 4 ford52 @see Eq.~3.24!# andd54 @see Eq.~3.19!#. In
order to obtain an estimate ford53, we introduce

f ~u;a!5
d„y~u,a!;a…

z0
S 2u

a D 2d

. ~3.21!

One hasd/z0;ud for u→0 or ;y2d for y→` due toy(u
→0,a);r (u→0,a);u21 @see Eq. ~3.18!#. Therefore

FIG. 4. Universal dependence of the displacementd(y;a) of the
contour line from its asymptote on the distancey @compare Fig. 1,
and see Eqs.~3.20! and ~3.18!# for fixed opening anglesa5p/2
andp/4. The curves ford53 correspond to a suitable interpolatio
@see Eq.~3.22!# between the exactly known curves ford52 and 4,
so that for y/z0→` they exhibit the correct asymptotic deca
;(y/z0)23 in accordance with the distant-wall correction.
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f (u;a) tends foru→0 to a constant value~depending ond).
For y50 one has 2u/a51 and f 5Dr sin(a/2)/z0 ~compare
Figs. 1 and 3!. A reasonable estimate ford(y;a) in d53 can
be obtained by interpolatingf (u;a) linearly betweend52
and 4 and using this approximation forf in

d„y~u,a!;a…

z0
5 f ~u;a!S 2u

a D 3

, d53. ~3.22!

The curves ford53 in Fig. 4 correspond to the right-han
side of Eq.~3.22! for fixed valuesa5p/2 andp/4. For y
50 one has 2u/a51, so that fory50 the linear interpola-
tion of f implies a linear interpolation ofd @see Eq.~3.21!#.

D. Exact results in d52

At criticality systems exhibit not only scale invarianc
but, more generally,conformal invariance@44#. This prop-
erty is particularly useful ind52, where thelarge conformal
group provides mappings between many different geo
etries@44#. In higher spatial dimensions only Mo¨bius trans-
formations are available as conformal mappings~small con-
formal group! which map geometries bounded by planes a
spheres onto other geometries bounded by planes
spheres. Ind52 a wedge with opening anglea can be con-
formally mapped onto a half-plane, for which the profile
known. This leads to@48#

M ~r ,u,t50;a![^f&wedge5A~p/a!b/n@r sin~up/a!#2b/n

~3.23!

in the wedge, whereb/n51/8 within the Ising universality
class considered here. Note that conformal invariancecom-
pletely determines the universal amplitude functionC(u;a)
@see Eq.~2.10!# as

C~u;a!5~p/a!b/n@sin~up/a!#2b/n, d52, ~3.24!

which would remain unspecified by scale invariance cons
erations alone.

Using Eqs.~3.24! and ~3.7! we obtain the relation

r ~u;a!

z0
5

p/a

sin~up/a!
, d52 ~3.25!

for the contour lines of the order parameter profile. The
viation Dr from the asymptotic contour lines at the center
the wedge, i.e.,u5a/2, is defined as shown in Fig. 1. W
obtain

Dr

z0
5

p

a
2

1

sin~a/2!
, d52. ~3.26!

In the limit a→p, Eq. ~3.26! yields the expansion

Dr

z0
5S 12

a

p D1S 12
p2

8 D S 12
a

p D 2

1OS S 12
a

p D 3D ,

d52, ~3.27!

which is the analog of Eq.~3.10! for d52. Fora→0, from
Eq. ~3.26! we obtain
-

d
nd

-

-
f

Dr

z0
5

p22

a
1O~a!, d52, ~3.28!

which is the analog of Eq.~3.11!. Note that Eqs.~3.10! and
~3.27! and ~3.11! and ~3.28!, respectively, are very simila
even in a quantitative sense, i.e., the dependence on the
tial dimensiond is weak.

We close this subsection with a discussion of the sh
distance expansion of the order parameter according to
~3.12! for the cased52. The thermal average of the stre
tensor ^T& in the wedge can be obtained by means o
conformal mapping from the half-plane@25# and in polar
coordinates it reads

^Trr &52^Tuu&5
c

24p F S p

a D 2

21G 1

r 2 , ~3.29a!

^Tru&5^Tur&50, ~3.29b!

wherec is the conformal anomaly number. The distant-w
correction for the order parameter profile according to E
~3.13! can be directly calculated from the expansion of E
~3.23! for small u, with the result

M ~r ,u,t50;a!5M ~r ,u,t50;p!H 11
b

6n F S p

a D 2

21Gu2

1O~u4!J . ~3.30!

From Eqs. ~3.12!, ~3.29!, and ~3.30! we obtain bf5
2(4p/c)b/n in d52. For the Ising universality class con
sidered here (c51/2 andb/n51/8) we havebf52p. Fi-
nally, we note that the next-to-leading distant-wall correcti
O(u4) indicated in Eq.~3.30! stems fromD rTuu and (Tuu)2

because both operators have the same scaling dimen
four.

IV. STATIC STRUCTURE FACTOR

The static structure factorS(uqu) in a bulk system is given
by the Fourier transform of the two-point correlation fun
tion G(ur2r 8u), where q denotes the momentum transf
and r and r 8 are positions in space. Due to translation
invariance and isotropy of the bulk the moduli of the m
mentum transfer and the distance in space remain as the
arguments in Fourier space and real space, respectivel
the wedge geometry translational invariance and isotr
only hold in the (d22)-dimensional subspace along th
edge so that the position dependence ofG is more compli-
cated. Apart from modifications of the eigenmode spectr
caused by different boundary conditions we follow the de
vation of G for a wedge as given in Ref.@20#.

A. Mean-field theory

Starting from the formal definition G(r ;r 8)
[@dm(r )/dh(r 8)#h50, where m(r ) denotes the order pa
rameter profile andh(r ) is an external spatially varying field
we obtain

2DG~r ;r 8!16m2~r !G~r ;r 8!5d~r2r 8! ~4.1!
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at the critical point and within mean-field theory. Forr
5(r ,u,xi) we apply a Fourier transform with respect toxi
and defineS(p;r ,u;r 8,u8) by @20#

G~r ,u,xi ;r 8,u8,xi8!

5E dd22p

~2p!d22
S~p;r ,u;r 8,u8!exp@ ip•~xi2xi8!#. ~4.2!

From Eqs.~4.1! and ~4.2! and by usingm(r )5C(u;a)r 21

@see Eq.~3.3!#, one obtains

2F ]2

]r 2 1
1

r

]

]r
1

1

r 2

]2

]u2 2p2GS1
6

r 2 @C~u;a!#2S

5
1

r
d~r 2r 8!d~u2u8!. ~4.3!

We solve Eq.~4.3! in terms of eigenfunctions to a spectru
E of eigenvalues for the operator on the left-hand side of
~4.3!. Each eigenfunction can be written as a product o
radial partR(r ) and an angular partc(u). For the shifted
spectrumk25E2p2 the corresponding eigenvalue equatio
are given by

Rn9~r !1r 21Rn8~r !1~k22lnr 22!Rn~r !50 ~4.4!

and

2cn9~u!16@C~u;a!#2cn~u!5lncn~u!, ~4.5!

where Eq.~4.4! is a Bessel equation with parameterk and
Eq. ~4.5! is a Laméequation. In general the discrete eige
valuesln cannot be given in closed form~see Appendix B
for details!. Apart from the specific spectrum$ln% and the
corresponding eigenfunctions$cn% one can represent the so
lution of Eq. ~4.3! in the same form as in Ref.@20#, i.e.,
r

or

fo
e

.
a

-

S~p;r ,u;r 8,u8!

5
2

a (
n53

` E
0

`

dkk
JAln

~kr !JAln
~kr 8!

k21p2
cn~u!cn~u8!

5
2

a (
n53

`

IAln
~pr,!KAln

~pr.!cn~u!cn~u8!, ~4.6!

wherep5upu, r ,5min(r,r8), andr .5max(r,r8). In order to
determine the decay of the two-point correlation function
real space we insert Eq.~4.6! into Eq. ~4.2!, and proceed
along the lines described in Ref.@20#. The decay ofG away
from the edge is governed by the critical exponenthe'(a)
according to

G~r ,u,xi ;r 8→`,u8,xi8!;
1

~r 8!d221he'(a)
, ~4.7!

and as in Ref.@20# we find from Eq.~4.2! that in the limit
r 8/r→` the smallest eigenvalue in the spectrum$ln% deter-
mines the exponenthe'(a). With the notation used in Ap-
pendix B the smallest eigenvalue isl3 and in accordance
with Ref. @20#, we find he'(a)5Al3. Along the edge, i.e.,
in the limit uxi2xi8u→` for r ,r 8.0 the decay ofG is gov-
erned by the critical exponenthei(a) according to

G~r ,u,xi ;r 8,u8,xi8→`!;
1

uxi2xi8u
d221hei(a)

. ~4.8!

In agreement with the general scaling relation

he'~a!5
h1hei~a!

2
, 2<d<4, ~4.9!

we find hei(a)52he'(a) within mean-field theory~for
which h50). From the approximate evaluation of the spe
trum $ln% @see Eq.~B6! in Appendix B# we obtain
he'~a!5Al3'
3p

a
A12

4a

3p2
z~a/2!1

2a2

9p4S p21
g2~a!

24
a222z2~a/2! D ~4.10!
-
on

or

f the
one
wherez(u) is the Weierstrassz function @see Eq.~A9!# and

g2~a!5
4k2~a!@12k2~a!#

@122k2~a!#2
1

4

3
~4.11!

@see Eq.~B1!#. In the limit a→p corresponding to a plana
surface Eq. ~4.10! becomes exact and one obtainsh'

[he'(p)53 in accordance with the mean-field result f
the semi-infinite geometry at the normal transition@18#. The
dependence ofhe' on a is displayed in Fig. 5 ford52 @see
Eq. ~4.16! in Sec. IV B# and 4 @see Eq.~4.10!#, where the
overall 1/a dependence has been split off. The estimate
d53 is obtained by interpolating linearly between the curv
for d52 and 4 ~compare Figs. 2 and 3!. The exponent
r
s

he'(a) increases monotonically asa decreases. This im
plies that at the normal transition the correlation functi
decays more rapidly away from an edge (a,p) than away
from a planar surface (a5p).

Finally, we note that from the general scaling relation f
the edge exponent

be~a!5
n@d221hei~a!#

2
, 2<d<4, ~4.12!

which describes the singular temperature dependence o
order parameter at the edge, within mean-field theory
has@see Eq.~4.9!, hereh50 andn51/2#
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be~a!5
11he'~a!

2
, d54. ~4.13!

In the limit a→p corresponding to a planar surface E
~4.13! yieldsbe(p)5b152, in accordance with the gener
scaling relationb15dn for 2<d<4 at the normal transition
for the semi-infinite geometry@36#.

B. Exact results in d52

In d52 rigorous results for the edge exponenthe'(a)
can be obtained starting from the correlation function in
half-plane at the normal transition@49#

G~x,y;x8,y8!5~yy8!2h/2GS ~x2x8!21y21y82

yy8
D ,

~4.14!

wherex and x8 are the coordinates of the two points alo
the surface, andy andy8 are their distances from the surfac
@49#. Applying the conformal mapping and carrying out th
limit r 8/r→` at fixed r .0 leads to

G~r ,u;r 8,u8!;S p

a D hFsinS p

a
u D sinS p

a
u8D G (h i2h)/2

3~rr 8!2h/2S r 8

r D 2ph i /(2a)

~4.15!

for the correlation function in the wedge. From Eq.~4.15!
one can read off the scaling relation@49#

he'~a!5
h

2
1

p

a

h i

2
. ~4.16!

In the limit a→p corresponding to a planar surface one h
he'(p)5(h1h i)/25h' , as expected@see Eq.~4.9!#. In d

FIG. 5. Universal dependence of the edge exponenthe'(a) @see
Eq. ~4.7!# on the opening anglea, with the overall 1/a dependence
split off. The curve ford53 shows the linear interpolation betwee
the exactly known curves ford52 @see Eq.~4.16!# andd54 @see
Eq. ~4.10!#. The dot fora/p51 shows the known valueh'5(h
1h i)/2.2.518 corresponding to a planar surface ind53. The
small difference between the dot and the value of the interpola
curve ford53 is a measure of the uncertainty associated with
aforementioned linear interpolation scheme.
.

e

s

52 the edge consists of a single point so that one can
define correlations along the edge. However, if we forma
definehei(a) by Eq.~4.9! we findhei(a)5(p/a)h i . From
b152 @36# we obtainh i54 at the normal transition within
the Ising universality class, which implies@see Eq.~4.12!;
heren51#

be~a!5
hei~a!

2
5

2p

a
, d52 ~4.17!

for the edge exponent of the magnetization. We note thabe
given by Eq.~4.17! is four times larger than its correspond
ing value at the ordinary transition@20–22#.

V. SUMMARY

We have investigated the universal local properties of
order parameter profile in a wedge with opening anglea ~see
Fig. 1! for the normal transition. We have obtained the fo
lowing main results.

~1! NearTc the order parameter is determined by unive
sal scaling functions and the two nonuniversal bulk amp
tudesa and j0

1 @see Eq.~2.3!#. At Tc the order paramete
profile reduces to a power lawr 2b/n in radial direction mul-
tiplied by a universal amplitude function depending on t
polar angleu and the opening anglea @see Eqs.~2.6! and
~2.10!#. The amplitude function is symmetric around th
midplane and diverges asu2b/n upon approaching the sur
faces forming the wedge@see Eq.~2.13!#.

~2! We have determined the universal amplitude funct
C(u,a) within mean-field theory, i.e., for space dimensio
d54 @see Eqs.~3.5! and ~3.6!#, where the order paramete
profile in the wedge and forT5Tc can be obtained from the
order parameter profile in the film geometry forT,Tc @see
Eq. ~3.4!#. In conjunction with exact results ind52 @see Eq.
~3.24!# we construct an estimate forC(u,a) for d53 ~see
Fig. 2!.

~3! The amplitude function determines the meniscusl
contour lines of a constant value of the critical order para
eter profile@see Eq.~3.7! and Fig. 1#. The deviationDr of
the contour line relative to its asymptotes~compare Fig. 1!
from the corner of the wedge vanishes linearly in the pla
limit a→p @see Eqs.~3.10! and~3.27!# and diverges;a21

for a→0 @see Eqs.~3.11! and ~3.28!#. Figure 3 presents an
estimate of the functionDr (a) for d53.

~4! The contour lines approach their asymptotes asy2d

for increasing lateral distancey @see Fig. 1 and Eq.~3.20!#.
This follows from an analysis of distant-wall corrections
terms of the stress tensor~see Sec. III C!. The explicit results
for d52 and 4 allow one to construct an estimate for t
corresponding behavior ind53 ~see Fig. 4!.

~5! The decay of the two-point correlation function atTc
away from the edge and parallel to the wedge is governed
the critical edge exponentshe'(a) andhei(a), respectively
@see Eqs.~4.7! and ~4.8!#. They fulfill the scaling relation
he'(a)5@h1hei(a)#/2 with the bulk exponenth. Based
on the quite accurate estimate ind54 @see Eq.~4.10! and
Appendix B# and the exact result ind52 @see Eq.~4.16!#
Figure 5 presents an estimate forhe'(a) in d53. Equations
~4.13! and~4.17! provide the critical edge exponentbe(a) of
the order parameter for the normal transition. Equation~4.6!

d
e
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gives the full structure factor for the wedge geometry and
T5Tc within the mean-field approximation.
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APPENDIX A: ELLIPTIC FUNCTIONS

Here we summarize a few properties of elliptic functio
as far as they are needed for the derivation of the res
obtained in this paper. For further information we refer to t
literature ~see, e.g., Refs.@50–52#!. The properties of the
Jacobian elliptic functions can be derived starting from
Jacobi amplitude am(u;k) which is implicitly defined by the
incomplete elliptic integral of the first kind:

u5E
0

am(u;k) dw

A12k2 sin2w
. ~A1!

The complete elliptic integral of the first kindK5K(k) is
defined by am(K;k)5p/2. For the derivation of Eq.~3.10!
we quote the expansion ofK(k) in powers of the modulusk:

K~k!5
p

2 F11
1

4
k21

9

64
k41O~k6!G . ~A2!

From the first derivative of Eq.~A1! with respect tou, for
k2<1 one obtains the relation

dn~u;k![
]

]u
am~u;k!5A12k2 sn2~u;k! ~A3!

for the delta amplitude dn(u;k) using the standard notation

sn~u;k![sin@am~u;k!#, cn~u;k![cos@am~u;k!#.
~A4!

Due to am(0;k)50 and am(K;k)5p/2, one has

sn~0;k!50, cn~0;k!51, dn~0;k!51, ~A5a!

sn~K;k!51, cn~K;k!50, dn~K;k!5A12k2.
~A5b!

The derivation of Eq.~3.17! is based on the Taylor expan
sions

sn~u;k!5u2
11k2

3!
u31

1114k21k4

5!
u5

2
11135k21135k41k6

7!
u71O~u9!,

~A6a!
r

ti-
e
re-

lts
e

e

dn~u;k!512
k2

2
u21

k2~41k2!

4!
u42

k2~16144k21k4!

6!
u6

1O~u8!. ~A6b!

Finally, we quote the relation

E„am~u;k!,k…5E
0

u

dn2~x;k!dx

5E
0

am(u;k)
A12k2 sin2wdw ~A7!

between the incomplete elliptic integral of the second k
E(x,k) and the delta amplitude dn(u;k). E(k)[E(p/2,k) is
the complete elliptic integral of the second kind.

As demonstrated in Appendix A of Ref.@41# the mean-
field order parameter profile can be obtained from the ob
vation that@C(u;a)#2 is a Weierstrass̀ function up to an
additive constant. The Weierstrass` function is an elliptic
function which is related to squares of certain Jacobian el
tic functions@50,51#. It solves the differential equation

@`8~u!#254`3~u!2g2`~u!2g3 , ~A8!

whereg2 andg3 are the invariants of̀ . Note that no term
quadratic in` appears on the right-hand side of Eq.~A8!.
This condition determines the additive constant in the re
tion betweeǹ andC 2 which appears as the ‘‘potential’’ in
the eigenvalue problem in Eq.~4.5!. For the derivation of the
spectrum$ln% ~see Appendix B! the Weierstrassz function
is also needed. It is the negative integral of`(u) and can be
written as

z~u!5
1

u
2E

0

uF`~z!2
1

z2Gdz. ~A9!

Note thatz(u) is not an elliptic function. For the explicit
calculation of the spectrum$ln% we finally quote the Lauren
series of̀ (u) andz(u) aroundu50:

z~u!5
1

u
2

g2

60
u32

g3

140
u51O~u7!, ~A10a!

`~u!5
1

u2 1
g2

20
u21

g3

28
u41O~u6!. ~A10b!

APPENDIX B: EIGENMODE SPECTRUM

The spectrum of the eigenvalue problem defined by
~4.5! can be determined along similar lines as in Appendix
of Ref. @41#. The Weierstrass function associated w
C(u;a) @see Eq.~3.5!# can be written in the form̀ (u)
5C 2(u;a)2a, where a is a constant to be determined
Based on Eq.~3.4! we aim at obtaining a differential equa
tion for ` which is of the form given by Eq.~A8!. This
requirement is fulfilled ifa51/3, which results in

`~u!5F2K

a

dn~2Ku/a;k!

sn~2Ku/a;k! G
2

2
1

3
, ~B1a!
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g25
4k2~12k2!

~122k2!2 1
4

3
, ~B1b!

g35
4k2~12k2!

3~122k2!2 1
8

27
. ~B1c!

The eigenvalue problem in Eq.~4.5! can now be cast into a
Laméequation@52#

2cn9~u!16`~u!cn~u!5encn~u!, ~B2!

whereen5ln22. As discussed in Appendix B in Ref.@41#,
the eigenvalue spectrum is given by the solution of the t
equations

2anz~a/2!2aFz~an!1
`8~an!

2`~an!2en/3G5np i , ~B3a!

`~an!5
en

3227g3

27g229en
2 . ~B3b!

The mode numbersn are integers~see below! and an are
auxiliary parameters with the propertyan→0 for n→`. For
largen, Eq. ~B3! can be solved asymptotically by using th
expansions quoted in Eq.~A10!. From the expansion fo
`(an) for largen we obtain

en52
9

an
2 F11

7g2

540
an

41O~an
6!G , ~B4!

which implies the expansion

2

a
z~a/2!an2

3

an
2

g2

180
an

31O~an
5!5

np i

a
. ~B5!

Equation ~B5! can be solved with the ansatzan53a i /
(np)@11An221Bn241O(n26)#. Inserting the solution
into Eq. ~B4! leads to
ta

J

.

n,

in
n

o

en5S np

a D 2H 12
12

~np!2 az~a/2!

2
36

~np!4F „az~a/2!…22
g2

48
a4G1O~n26!J ; ~B6!

ln5en12 yields the desired spectrum.
The allowed mode numbersn can be obtained by consid

ering the special casea5p corresponding to a planar su
face, for whichC(u;p)51/sinu and Eq.~4.5! can be solved
in closed form. For the present problem the Weierstrasz
function can directly be derived from Eqs.~A9! and~B1!, so
that

z~u!5
2K

a Fdn~2Ku/a;k!

sn~2Ku/a;k!
cn~2Ku/a;k!

1E„am~2Ku/a;k!,k…1
k222

3

2K

a
uG , ~B7!

with K5K(k) as defined in Appendix A. Equation~B7! ex-
plicitly demonstrates thatz(u) is not an elliptic function. At
the midplaneu5a/2, Eq. ~B7! reduces to@see Eq.~A5!#

z~a/2!5
2K~k!

a FE~k!1
k222

3
K~k!G . ~B8!

According to Eq.~3.5b! the special casea5p corresponds
to k50 for which z(p/2)5p/6 from Eq.~B8! andg254/3
from Eq. ~B1!. From Eq.~B6! we infer thaten5n222, i.e.,
ln5n2, which is indeed the correct eigenvalue spectrum
C(u;p)51/sinu. The eigenfunctions are normalizable fo
n>3. Therefore,l3 is the lowest eigenvalue for this prob
lem.

For a numerical solution of Eq.~B3! using, e.g., the New-
ton method the asymptotic spectrum given by Eq.~B6! for
n>3 provides excellent initial values for the iteration.
fact, these initial values already are within 0.1% of the ex
spectrum even for the ground staten53 if 0.1,a/p<1.
This implies that the mean-field expression forhe'(a) given
by Eq. ~4.10! is quite accurate ifa is not too small.
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