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Critical adsorption near edges
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Symmetry breaking surface fields give rise to nontrivial and long-ranged order parameter profiles for critical
systems such as fluids, alloys, or magnets confined to wedges. We discuss the properties of the corresponding
universal scaling functions of the order parameter profile and the two-point correlation function, and determine
the critical exponentsy; and », for the so-called normal transitiofS1063-651X99)00411-0

PACS numbe(s): 64.60.Fr, 68.35.Rh, 61.20p, 68.35.Bs

[. INTRODUCTION has been demonstrated that x-ray scattering experiments at
grazing incidence are capable of resolving such interfacial
Advanced experimental techniques have emerged whichtructure§16,17. N _
allow one to endow solid surfaces with stable geometrical f the temperature is increased sufficiently above the triple
structures which display a well-defined design on the scale dpoint of the fluid one encounters its bulk critical poifg.
nanometers or micrometers. Lateral geometric structures caf'S ¢an be either the liquid-vapor critical point of the fluid
be formed by using various lithographic techniques such a£'. the demixing critical point if the fluid is a binary liquid
e.g., holographidi], x-ray (LIGA) [2], soft[3], and nano- rhixture. The experience with planar surfaces t¢ll8,19
sphere lithographyi4]. These microfabrication techniques that at bulk criticality the confinement triggers interesting
pnhe grapny 2. : qUES Lo surface critical phenomena. In this case the local order
provide routes to high-quality patterns and structures wit

lateral di . q o t f Th iruct arameter¢ is perturbed near the surface within a layer
ateral dimensions down 1o téns of nm. These STUCtures aify, ,qq thickness is governed by the diverging bulk correla-
either periodic in one lateral direction, consisting of groove

. : : Stion length £. (t—0)=£;[t| =7, wheret=(T—T)/T.; v
with various sha_pe§ Qf the Cross sect(erg., we.dgehk)a O™ denotes the universal bulk critical exponent afid is the
they display periodicity in both lateral d!mensmns. __nonuniversal amplitude above-) and below )T, . Thus

Thes_e ma_nmade surfaces offer a w_|de range of posablgt.rc the perturbation due to the surface intrudes deeply into
applications if they are exposed to fluids. In that case th

. : . the bulk.
surfaces act as a template with a designed topography which |, orqer to extend our knowledge of the structure of con-

imposes specified lateral structures on a fluid. For examplgineq fluids to these elevated temperatures, we set out to
in the context of microfluidic$5,6] these geometrical struc- pyestigate the aforementioned surface critical phenomena in
tures can be used as guiding systems in order to deliver tiny \vedge. Based on analytic calculatid2®—27 and com-
amounts of valuable liquids to designated analysis centers OButer simulationg 28,29, the local critical behavior in a
a solid surface as part of microscopic chemical factdifds  wedge has been analyzed for the case that the corresponding
Besides the numerous experimental challenges associatgthnar surface exhibits the so-calledtinary or specialsur-
with these systems, there is also the theoretical challenge face phase transitiori48,19. In the corresponding magnetic
understand the corresponding highly inhomogeneous fluithnguage the ordinary phase transition corresponds to the
structures(and ultimately the flow dynamigsas well as to  case that the couplings between the surface spins remain be-
guide the design on the basis of this insig8L low the threshold value of the multicritical special transition
In view of this goal the study of the fluid structures in a beyond which the surface can support long-ranged order
single wedgelike groove with opening angleserves as a even aboveT, [18,19, and in which there are no surface
paradigmatic first step. Far= 7 the geometry reduces to fields. The ordinary transition has also been studied for dif-
the well-studied case of a planar substrate. For decreasirfgrent shapes of the confinement such as parabolic[@@es
values ofa the fluid is squeezed, whereas tor-7 a ridge-  32]. The main concern of these studies has been critical edge
like solid perturbation is projected into the fluid. Due to the exponents describing the leading critical behavior of the or-
unbound accessible space for all valuesrotthe bulk prop-  der parameter near the corner, which differs from that at
erties of the fluid are unchanged by the presence of thelanar surfaces and in the bulk. One finds that in general the
wedge. (This is an important difference as compared withedge exponents depend on the opening aagl&hese stud-
pores in which the confinement alters the bulk propeitiés. ies aim at describing magnetic systems in the absence of
low temperatures one finds pronounced packing effects fosurface fields, as they are experimentally accessible, e.g., by
the fluid particles near the corner of the wedge which differscanning electron microscop$3].
significantly from those encountered at planar surfaces However, the aforementioned surface and edge universal-
[9-11]. Even stronger effects occur if the wedge is exposedty classes are not applicable in the present context of con-
to a vapor phase. In this case a liquidlike meniscus is formefined fluids. For example, in a binary liquid mixture one of
at the bottom of the wedge which undergoes a filling transithe two species will prefer the confining substrate more than
tion at a temperaturd, below the wetting transition tem- the other, which results in an effective surface field acting
peratureT,y of the corresponding planar substrft@—15.1t  on the order parameter given by the concentration

1063-651X/99/6(5)/516312)/$15.00 PRE 60 5163 © 1999 The American Physical Society



5164 A. HANKE, M. KRECH, F. SCHLESENER, AND S. DIETRICH PRE 60

difference between the two species. Similar arguments hold
for a one-component fluid near liquid-vapor coexistence.
These surface fields give rise to another surface universality
class, the so-calledormal transition[18,19. This differs
from the ordinary and special transitions discussed above in
that these symmetry breaking surface fields generate a non-
trivial order parameter profile even if the bulk is in the dis-
ordered phase, i.e., fdr=T,. For a planar surface this gives
rise to the well-studied so-callexditical adsorptionphenom-
enon (see, e.g., Refd.18,19,34—38. Here we extend the _ . ) )
corresponding field-theoretical analysis for the normal tran- /G- 1. Cross section of a wedge perpendicular to its edge with
opening anglex. The system is translationally invariant in the (

sition to the wedge geometry under consideration. After prel2)-dimensiona| subspace parallel to the edge. The curve labeled

senting our model and discussing general SC"’?"”Q propertiesM =const” represents a contour line of the order parameter pro-

(Sec. I) we analyze the.order parameter pr_oflle n Sec'.l.”file (see Sec. llI B. r and 0< #<a are cylindrical coordinatesz

and the structure factor in Sec. IV. By focqsmg on Fhe criti- =r sin @ is the normal distance from the surface of the wedge. The

cal temperaturdl=T; we are able to obtain analytical re- yashed lines are the asymptotes of the contourMreconst which

sults. They are summarized in Sec. V. Appendixes A and Byre 4 distance, apart from the surfaceR=z,/sin(@/2) is the dis-

contain important technical details needed in Secs. lll angance between the intersection of the asymptotes and the edge of the

V. wedge Ar + R is the distance between the contour line in the center
Experimentally, wedges are characterized by a finiteand the edge. The contour line approaches the asymptotes such that

depthA. Moreover, in many cases they are manufactured ag(y—«)—0 and 8(y=0)=Ar sin(a/2), wherey measures the

a laterally periodic array of parallel grooves and ridges. Thealistance along the wall.

structural properties of a fluid exposed to such a periodic

array depend sensitively on the ratdd ¢ of the depth and c

the correlation length. Fak/é<1 the system will resemble He[¢]=f dd2x||{—e[¢(0,0x)]Z—he¢>(0,0x)],

a critical fluid exposed to a mildly corrugated substrate, 2

which is expected to give rise to corrections to the leading (2.19

critical adsorption behavior at a planar substrate. Kog

>1 near the tip of a ridge and near the bottom of & groovéyhered is the space dimension and parametrizes thed(
the presence of their periodic duplicates becomes irrelevant, 2).dimensional subspace parallel to the edge along which
so that in this limit the edge singularity of a single edge withthe system is translationally invariant. The bulk Hamiltonian
a>m and a<m, respectively, will prevail. Our present 3 given by Eq.(2.13 represents the standard Ginzburg-
study deals with the limit\ —o and {— taken such that | andaug?* model in the absence of external bulk fields. The
Alg>1. Certainly, in a later stage it will be rather rewarding pylk parameterr is proportional to the reduced temperature
also to study the crossover regime/é~1 in which the t=(T—T.)/T, g is the bulk coupling constant, and de-
grooves and the ridges as well as the way they are joineflotes the opening angle. The surface Hamiltorfiangiven
together play an equally important role. The occurrence ohy Eq. (2.1h captures the effect of the two semi-infinite
the unbending transition in the case of wetting on corrugate@anar surfaces forming the geometric boundaries of the
sgt_)strate$3_9] indicgtes that the regima/é~1 might ex-  \yedge located a=0 andd= «, respectively. Note thakl,
hibit rather interesting new phenomena. and H, take their standard fixed-point form with a surface
enhancemert; and a surface fielt; for each of the surfaces
i=1 and 2. Cubic surface field84] will be disregarded
Our investigation is based on the Ginzburg-Landauhere. The surfaces meet at the opening anglelong the
Hamiltonian determining the statistical weight expt{) edge of the wedge which gives rise to the third contribution
for a scalar order parametef which represents a critical .. The edge Hamiltoniart given by Eq.(2.19 has the
system within the Ising universality class. According to thesame structure as the surface contributidpn, and is char-
wedge geometryH is given as a sum of three contributions, acterized by an edge enhancemegtand an edge field,
i.e., H="H,+ Hs+ He, Which refer to the bulklf), the sur- [19]. The total Hamiltoniar{ constitutes a renormalizable
face (), and the edgée) contributions, respectively. In cy- model(see Sec. IVA3 in Refl19)). _
lindrical coordinates =(r,6,x) (see Fig. 1, the individual In this investigation we are exclusively concerned with
contributions are given by the normal transition which is characterized by nonzero val-
L . ues of all surface and edge fields, h,, andh, and arbitrary
e * d—2 2. T 4 values of the surface enhancementsindc, and of the edge
Hel b1= fo defo dr rf d X”[E(V(i)) ML AT } enhancement,. For nonzero field$,; or h, the system is
(2.1a orderedat any finite point even fof >T.. Asymptotically
close to the critical poinT;, the universal properties of the
corresponding order parameter profile are linked toctite
cal adsorption fixed poindf the corresponding renormaliza-
tion group description. The ensuing scaling functions refer to
the scaling limitsr—«~ and é—o, where the ratiar/¢ is
kept fixed forming a finite scaling variablét the critical

II. MODEL AND GENERAL RESULTS

ol [ ar | d“x[%w(r,o,x”)]z—hm(r,o,x)

Co 2
+E[¢(r’a'XH)] —h2¢(r,a,x)], (2.1b
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adsorption fixed point the surface fields are infinitely large, In the limit «= 7 the wedge geometry coincides with the
so that the order parameter profile semi-infinite geometry. In this limit the universal scaling

functionsC.. reduce to
M(r,0,t;a)=(¢p(r,0,X))) 2.2 -

diverges at the surfaces=0 and#= a of the wedge accord- Co(f3a=m)=ca(sing) ", 2.8
ing to a power law(We recall that such divergences refer to \ here the universal amplitudesc..  with ¢, /c_
the renormalization group fixed point, whereas actually the_ "
divergence of the order parameter profile is cut off at atomic‘h
distances from the surface€onsequently, at this so-called

(&51€5) ~P!v govern the critical adsorption profile at a pla-
ar surfacqg 37], so that

normal transition the surfaces can differ at most with respect M(r,0,t=0;a=m)=M.(z=r sind,t=0)
to the sign of the fields. In the following we assume that the .
surface fields have the same sign, and we denote this con- =ac.(z&) P" 2.9

figuration as(+,+). Note that onlyH,, in conjunction with ) _ _ o
the aforementioned boundary conditions is left to determing/ields the order parameter profiM.. , in the semi-infinite

the functional form of the order parameter profile. system at criticality. The profiléM.,,(z,t=0) at a refer-
Close to the critical poinT,, the order parameter profile ence distance, from the surface can be used in order to
takes the scaling form construct the ratio
M(r,0,t;a)=alt|PP.(r/és ,6;a), (2.3 M(r,0,t=0;a)

R T (0a)p B, p=
Mozgi=0) _Che@p " p=rizo, (210

where . =&, [t| 77 with t=(T—T.)/T,=0 is the correla-
tion length, andP-. (¢ ,0;a) are the corresponding scaling which is independent of the nonuniversal amplitudesnd
functions with the scaling variable &, . Here we have introduced the length ragie-r/z, and
the scaling function
fo=rl€s. (2.9

The amplitudea in Eq. (2.3) is the nonuniversal amplitude of CB;)=C(Gi)fe, =C-(Fia)lc_. 213

the bulk order parametév,=alt|#, T<T., whereg is the  we note that is not only universal but also independent of
corresponding bulk critical exponent. The scaling functionsihe definition for the correlation length, because the left-hand
P. are universal and have the limiting behavid?s ({.  side of Eq.(2.10 and p are expressed in terms of order
—,0,a)—0 andP_({_—=,0;a)—1, respectively. Note parameter profiles and distances, respectively, without re-
thatP+ andP_ are universal but depend on tHefinitionof Sorting to the notion of the correlation |ength_

the correlation lengtl . , because .. enters the scaling ar-  |n the limit that the normal distance=r sin 6 from the
gument{. . In the opposite limitf.—0, i.e, T—T., the  suyrface of the wedge is much smaller thar.e., for 6—0

scaling functionsP.. exhibit short-distance singularities in ith r fixed, the order parameter profile reduces to the planar
form of power laws which reflect the anomalous scaling di-semi-infinite behavior

mension of the order parameter
B o M(r,0,t=0;a)=ac.(z/& ) P”
+(+—0,0, =(C+(0; + v, .
P2lla=08i0)=Calfia)ls @9 —ac. 0P (rigr) Y, 90,
The ratio B/v of critical exponents has the values 1 dn (2.12
=4, =0.5168 ind=3 [40], and 1/8 ind=2. Equation(2.5)
implies a power law dependence ofor the order parameter so that Eqs(2.9) and(2.10 imply
profile at criticality:
C(6—0;a)—0 P, C(O—a;a)—(a—0) P,
M(r,0,t=0;a)=aC.(6;a)(rl&y) P (2.6) (213
The scaling functiong’.. (8;«) appearing in Eqs(2.5) and where we have used the symmetry property
(2.6) are universal but depend on the definition of the corre- C(0:a)=Cla—0.a). (2.14
lation length because they are derived frém . [However, ' ’
the productC. (£;)#"” is invariant with respect to different
choices for the definition of the bulk correlation lengtm
order to be specific we choose as the definition §othe At the critical point the radial dependence of the order
so-calledtrue correlation length which governs the decay of parameter profile in the wedge is given by the power law
the two-point correlation function in the bulk systdidi7]. r—#'v [see Eq(2.6)]. The dependence of the profile @nis

Ill. ORDER PARAMETER PROFILE AT T,

Equation(2.6) implies the relation captured by the universal amplitude functié(d;a) [see
_ _ Eq. (2.10], which ind=2 is determined by conformal in-
Ci(0;a)[C_(0;0)=(&51&9) FI" (2.7 variance argumentsee Sec. Ill . In d>2, however, one

_ has to resort to explicit field-theoretical calculations, assum-
between the scaling functiods. involving the universal ra- ing that the amplitude functiod, as other universal quanti-
tio &5 /&, - ties, is a smooth function of the spatial dimensnn the
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following we focus on the corresponding mean-field descrip- 1.0

tion, i.e., lowest order perturbation theory within the field- do2

theoretical approach. The mean-field results become exact at 0.9

the upper critical dimensiod, ;=4 of the field theory de- a \\\ e

scribed by Eq(2.1), i.e., ford ~4. In order to provide an @ 08 | A\ pESSS S - /

estimate for the order parameter profiledisr 3 we shall use &7 \\ d=3 /

the exact results ill=2 and the mean-field results =4 @g \\ 7

for an interpolation scheme betwedrs-2 and 4, where the o 0.7 \\\_//

correct scaling arguments and short-distance singularities are I d=4

implemented. For the order parameter profile studied here we ZC 06 |

shall use the valu@/v=0.5168[40] in d=3 instead of the D — a=mn/2

mean-field valugd/v=1. Thus only the amplitude function 05 L o=n/4

is treated in lowest order perturbation theory. 0 0.5 1
O/

A. Mean-field theory FIG. 2. Universal scaling functiof(6;«) [see Eq.(2.10] as

Within mean-field theory it is convenient to introduce the function of the polar angl® for fixed opening anglea = /2 and
reduced profile a=7/4 (compare Fig. 1 The divergences ai=0 and =« are

split off [compare Eq(2.13)]. The curves fod=3 show the linear

m(r,0,7;a)=~\g/12M(r,0,7;a); (3.1 interpolation between the corresponding exactly known curves for
d=2 [see Eq(3.24] andd=4 [see Eq(3.5]. Note that the shape

m(r, 6,7, a) is determined by the Euler-Lagrange equation of the curve ford=2 is independent of for 0<a<.
# 19 14 5 1 1

+ =5 = |m=mm+2m (3.2 C(6;a)= ,

V1+K%(a@) sn(0/1+K(a):k(a))

for r>0 and 0< #<«. The divergences of the profita near

a2 Tar e
the surfaces and the edge of the wedge account for the effect T<a<2m, (3.69
of the surface and edge parts of the Hamiltonian in the ( where nowk=k(«) is implicitly given by
+) configuration considered here. Fer0, Eg. (3.2 im-

plies, for the universal amplitude function a=2K(K)V1+K2, O<k=kg,~0.90953 (3.6b
C(0;a)=rm(r,0,7=0;a), (33  [see Eqs(A14) and(A15) in Ref.[41]]. In the following we

B . consider only the casesOa=< 7; according to Eq(3.6), the
[see Eq(2.10, heres/v=1] the equation extension to the case<a<2w is straightforward. Note

52 that the parametrizations of the opening anglas given by
—C(0;a)=—C(0;a)+2[C(6;a)]>. (3.4  Egs. (3.5b and (3.6b are monotonous functions of the
99 modulus k, and therefore the inverse functiok(«) is
uniquely defined but cannot be expressed in closed form in
general. The special case=m corresponds tk(a= )

=0 so that C(6;a=m)=1/sind, which reproduces the
mean-field result for the order parameter profile in the semi-
infinite geometry at the normal transition expressed in polar
coordinategsee Eqs(2.8) and (2.11); here B/v=1]. The
shape ofC(0;«) for d=2 [see Eq.{3.24) in Sec. lll D] and

Equation(3.4) leads to exact results fatin the limitd 4.
Note that Eq.(3.4) can readily be solved using the order
parameter profile obtained forfdm geometrywith (+,+)
boundary condition$41]. Specifically, Eq.(3.4) is equiva-
lent to the Euler-Lagrange equation for a film with thickness
L as given by Eq(A3) in Ref.[41] if the rescaled tempera-

2 H 2 H
ture 7L< there is replaced by «*. The expressio/« for d=4 [see Eq.(3.5] for fixed opening angles= /2 and

the wedge corresponds mL for the film. The solution of /4 is shown in Fig. 2, where the divergencesfat0 and

Eq. (3.4 can be expressed by the Jacobian elliptic functlonseza according to Eq(2.13 have been split off. As an

d dn, . A . . ;
shand.dn estimate ford=3, in Fig. 2 we show the linear interpolation
1 dn(0/1— 2K () k() between the corresponding curves €b+2 and 4.
C(0,a)= — :
V1_2k2(a) sn(o/ 1—2k2(a);k(a)) B. Contour lines of the order parameter profile
O<a<m, (3.59 One of the motivations for our investigation of criticality

in the wedge geometry is the frequent use of grooved sub-

in terms of the moduluk of the complete elliptic integral Strates as templates to impose inhomogeneous structures on
K (k) of the first kind(see Appendix A wherek=k(a) is  liquids. In the wedge geometry the dendity concentration

implicitly given by of the adsorbed critical fluid is inhomogeneous within planes
perpendicular to the edge. The intersection of these planes
a=2K(k)y1-2k? 1/2=k’=0, (3.5  with surfaces of constant order paramebé(r,0,t=0;«)

=M, renders the contour linas=r(6;«,M;) of the order
[see Eqgs(A12) and(Al13) in Ref.[41]] and parameter profile, which characterize the inhomogeneous
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shape of the order parameter configuration in the wedge. Far 1.5
away from the center of the wedge the order parameter pro-
file approaches the profile for a planar substrate so that the
contour lines asymptotically become straight lines parallel to -2 d-2
the surfaces forming the weddeompare Fig. L As ex- - 17 de3
pected, the deviation of the contour lines from these parallel i ~
straight lines is largest in the center of the wedge. The nor- k3 d=4
malized order parameter profile defined by the left-hand side g 062
of Eq. (2.10 yields the contour lines S 05
D) (e 37
0 1 1 1 1
0 0 0.2 0.4 0.6 0.8 1
where for a given contour line the reference distangés /T
fixed by the asymptotic distance of this contour line from the ) o .
wedge surface, i.e., bo=M.(zy,t=0) (see Fig. 1 FIG. 3. Universal dependence of the deviatian=r—R in

units of the reference distaneg of the contour line at the center of
the wedgecompare Fig. Lon the opening angle. The curve for
d=3 shows the linear interpolation between the exactly known
curves ford=2 [see Eq.(3.26] andd=4 [see Eq.(3.9]. Ar is
multiplied by a so that the producttAr attains a finite value for
a—0 [see Eq(3.28 for d=2 and Eq{(3.11) for d=4; we assume

in addition that the power lauhr («—0)~ a ! remains valid for

Thus the angular dependenceeaerycontour line exhibits
the same universal shape in units of the corresponding
asymptotic distance,. Equationg2.13 and(3.7) imply that
r(6—0,2)~ 6~ ! independent ofl and «.

Within mean-field theory(for which g/v=1) we obtain
from Eq. (3.5 in the center of the wedge, i.e., for= /2,

2<d<4].
r(0=al2,a) V1-K(a)
——=0(0=al2;a)=—=—, d=4. _ _
Zy V1-2K%(a) C. Distant wall corrections
(3.8 Far away from the center of the wedge the contour lines

of the order parameter profile approach straight lines which
are parallel to the wedge surfacésompare Fig. L This
implies that in this limit the deviation of the order parameter
profile from the corresponding profile in a semi-infinite ge-
ometry becomes small. This small deviation can be inter-
preted in terms of the so-called distant-wall correction which
is obtained from thehort-distance expansigd2—4§ of the
order parameter near, say, the surfa#e0 of the wedge.
For any scaling operatoP the short-distance expansion at
the normal transition can be written as

According to Fig. 1 the distande of the intersection of the
asymptotes from the edge is given By zy/sin(e/2) which
implies for the deviation\r =r — R of the contour line at the
center of the wedge:

V1—K%(a) 1
J1-2k%(a) Sin(al2)

In order to discuss E(q3.9), we first consider a very wide

z,, d=4. (3.9

wedge, i.e., the limita— 7 for which k?—0. In this limit _ d
the deviationAr decays according tpsee Eqs(3.5b and W1, 09)= (P (1, 039)) = 1By T po(r,0)(r 6)
(A2)] +0(692)], (3.12
2 2 3
Ar _ E( 9y S 77_)(1_ ‘) yo (1_ f) ) where T,,=T,, denotes the stress tensor componget-
Z, 3 m \6 8 m w ) pendicularto the wall atd=0 andr <r « is the small dis-
tance from the wall. For the order parameter profile
d=4. (3.10  =(¢) from Eq.(3.12 we infer

In the opposite limit of a very narrow wedge, i.e., far
—0, the deviationAr of the contour line in the centeti-
vergesaccording to

M(r,0;a)=M(r,0;m)[1+B,6%+ -], (3.13

in analogy to the short-distance expansion of the order pa-
Ar O rameter profile in the film geometry47], where B,
— =, T0la), d=4, (31D  =Db,(Tyer? From the general expression of the stress ten-
0 sor at criticality[see Eq(3.1) in Ref.[46]], in polar coordi-

whereQ = \2K(1/y/2)—2=0.622. This shows that the con- nates we obtain

tour lines are expelled from the wedge into the bulk for small

opening angles. The overall behaviorff for 0< a< 1 for 1 [ag\® 1[ag\* 1 Vg2 3 g

d=2 [see Eq(3.26 in Sec. Il D] andd=4 [see Eq(3.9)] Too=52 96 or | 5( 19)°= 229

is shown in Fig. 3. Again, the curve fal=3 represents the 5

estimate obtained by the linear interpolation between the " d-2 ﬁ—¢2+A 2 (3.14
curves ford=2 and 4(compare Fig. 2 4(d—1)|or? I :

2
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up to contributions of the ordey®, whereV andA | denote

the components of the gradient and the Laplacian along the

edge, respectively.

Within mean-field theory the thermal average of Eg.
(3.19 is obtained by settingl=4 and replacingp by (¢)
=+12/g m [see Egs.(3.1) and (3.3)]. Since the result is
independent ob we can use the fact that the order paramete
profile is symmetric around the midplame= a/2 in order to
obtain

(Taa>=%[[C(a/Z:a)]z—[C(a/Z:a)]“], d=4.
(3.15
From Eq.(3.5 we thus find
2 _ 12
<T00>:_i4 K@~k d=4, (3.16

gr* [1-2k*(@)]*
which exactly corresponds {d@,,) in the film geometry with
(+,+) boundary conditiongsee the first line of E¢(3.4) in
Ref.[41] for y=—1]. If Eq. (3.16) is inserted into Eq(3.12

for ¥ = ¢ the structure of the distant-wall correction as given
by Eqg.(3.13 is confirmed. However, for a complete identi-
fication the amplitudeb, must be determined. Within the
present mean-field approach Eg.13 can directly be veri-
fied by expanding Eq3.5) for 6—0 with « fixed. From the
expansions of the Jacobian elliptic functidrsee Eq.(A6)]

we obtain

o , k2<a>[1—k2<a)](e4 06)
m(r,8;a)=m(r,6;m)| 1+ 12K 12 16~ 105
+0<08>}, d=4, (3.17

from which one can read off, g/60 within mean-field
theory. The next-to-leading correcti®( ¢°) in Eq. (3.17) is

generated by the operatarT,, whereA, denotes the radial
part of the Laplacian in polar coordinates €,x)). In gen-

eral the corresponding correction@ ¢9*2) as indicated in
Eq. (3.12. In principle A T4, also yields a contribution to
the short-distance expansion, but one hasT ,,) =0 due to

the translational invariance along the-2)-dimensional
edge. We note that in tHdm geometrythe counterpart of the
operatorA, T, in the wedge doesot contribute to the next-

to-leading distant-wall correction of the order parameter pro-
file due to the translational invariance in the film. Therefore

in the film the next-to-leading correction is given by the
operator T, ), which gives rise t0O(6?) corrections
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FIG. 4. Universal dependence of the displacem¥mt «) of the
contour line from its asymptote on the distanccompare Fig. 1,
and see Eqs(3.20 and (3.18] for fixed opening angles:= /2
andw/4. The curves fod=3 correspond to a suitable interpolation
[see Eq(3.22] between the exactly known curves fb=2 and 4,
so that fory/z,—o they exhibit the correct asymptotic decay
~(y/zo) "2 in accordance with the distant-wall correction.

y=Y(0,a)=r(60,a)cosf—[R(a)+Ar(a)]coq a/2).
(3.18

Within mean-field theory, for the above choice Mf, [see
Eq. (3.7), here B/v=1] and usingr/zy=C(6;a), one ob-
tains

oy(b,a);a) _m(r,6;,a) a

Z—O—C(ﬁ,a)sm(e)—l—m—l, d=4.
(3.19

According to Egs. (3.13 and (3.19 the ratio

o(y(0,a);a)lzy as a function off represents the distant-
wall correction of the order parameter profile. Its leading
terms can be read off from E@.17). For generatl one has
[see Eq(3.7)]

o(y(6,a);a)

=[C(8,a)]""Psin(6)—1,
Z

(3.20

so thaté/zg— (1/6)[ (w/ a)?—1]6? for d=2 and§—0 [see

only. The latter operator also appears in the wedge geometiyq. (3.24) in Sec. lll D]. The behavior of(y, «) as function

and gives rise to the(6®) corrections indicated in Eq.

(3.17.

of y for fixed opening angles=7/2 and /4 is shown in
Fig. 4 ford=2 [see Eq(3.24] andd=4 [see Eq(3.19]. In

The distant-wall correction has an interesting geometricorder to obtain an estimate far=3, we introduce
interpretation. The contour lines of the order parameter pro-

file in the wedge and in the semi-infinite geometry, respec-

tively, belonging to the same valld, of the order param-
eter, are displaced by an amoufity;«) where §+2z9=2
=rsind and the distance is related to# by (compare
Fig. 1)

oy(8,a);a)
Zy

20
@

G

One hass/zg~ 6° for #—0 or ~y~ 9 for y— due toy(8
—0,a)~r(6—0,a)~60"' [see Eq. (3.18]. Therefore

f(6;,)= (3.21
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f(0; @) tends ford— 0 to a constant valu@epending o).
Fory=0 one has 2/a=1 andf=Ar sin(a/2)/z, (compare
Figs. 1 and 3 A reasonable estimate féy; ) in d=3 can
be obtained by interpolatin§(9; «) linearly betweerd=2
and 4 and using this approximation fbm

Sy(0,a)@)
Z—=f(0,a)

20)3
—1|, d=3. (3.22
o

The curves ford=3 in Fig. 4 correspond to the right-hand

side of Eq.(3.22 for fixed valuesa= 7/2 andw/4. Fory
=0 one has 2/a=1, so that fory=0 the linear interpola-
tion of f implies a linear interpolation of [see Eq.(3.21)].

D. Exact results ind=2

At criticality systems exhibit not only scale invariance

but, more generallyconformalinvariance[44]. This prop-
erty is particularly useful iml= 2, where thdarge conformal

group provides mappings between many different geom

etries[44]. In higher spatial dimensions only Mais trans-
formations are available as conformal mappitgrmall con-

formal group which map geometries bounded by planes an
an

spheres onto other geometries bounded by planes
spheres. Ird=2 a wedge with opening angte can be con-

formally mapped onto a half-plane, for which the profile is M(r,0,t=0;a)=M(r,0,t=0;m)

known. This leads t¢48]

M(r,0,t=0;a)=(P)wedge= Al a)P'"[ 1 siN( O/ )] P
(3.23

in the wedge, whergd/v=1/8 within the Ising universality
class considered here. Note that conformal invariacare-
pletely determines the universal amplitude functiéfy; «)
[see Eq(2.10] as

C(0;a)=(mla)P"[sin0mla)] P", d=2, (3.29
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Ar 72
—=——+4+0(), d=2,
ZO o

(3.28

which is the analog of Eq.3.11). Note that Eqs(3.10 and
(3.27 and (3.1 and (3.28, respectively, are very similar
even in a quantitative sense, i.e., the dependence on the spa-
tial dimensiond is weak.

We close this subsection with a discussion of the short-
distance expansion of the order parameter according to Eg.
(3.12 for the cased=2. The thermal average of the stress
tensor(T) in the wedge can be obtained by means of a
conformal mapping from the half-plarf@5] and in polar
coordinates it reads

Cc
<Trr>: _<T490> :E

a2 1
Ei R

(Tro)=(Tg)=0, (3.299

‘wherec is the conformal anomaly number. The distant-wall

correction for the order parameter profile according to Eq.

023.13 can be directly calculated from the expansion of Eq.

3.239 for small 9, with the result

B
1+a

e

(3.30

+O(¢94)}.

From Egs. (3.12, (3.29, and (3.30 we obtain b,=
—(4=/c)B/v in d=2. For the Ising universality class con-
sidered hered=1/2 andpg/v=1/8) we haveb,=—m. Fi-

nally, we note that the next-to-leading distant-wall correction
0O(6% indicated in Eq(3.30 stems fromA, T, and (T ;,)?
because both operators have the same scaling dimension
four.

which would remain unspecified by scale invariance consid-

erations alone.
Using Eqgs.(3.24) and (3.7) we obtain the relation

mla

r(o;a) B
zo sinOwla)’

d=2 (3.25

IV. STATIC STRUCTURE FACTOR

The static structure fact@(|q|) in a bulk system is given
by the Fourier transform of the two-point correlation func-
tion G(|r—r’|), whereq denotes the momentum transfer
andr andr’ are positions in space. Due to translational

for the contour lines of the order parameter profile. The deinvariance and isotropy of the bulk the moduli of the mo-
viation Ar from the asymptotic contour lines at the center of Mentum transfer and the distance in space remain as the only
the wedge, i.e.f=a/2, is defined as shown in Fig. 1. We arguments in Fourier space and real space, respectively. In

obtain

Ar o 1

7 a smai) 972

(3.26

In the limit «— 7, Eq. (3.26 yields the expansion

ol 52l

ZO a 8
(3.27

which is the analog of Eq3.10 for d=2. Fora—0, from
Eq. (3.26) we obtain

2
+0

d=2,

the wedge geometry translational invariance and isotropy
only hold in the @—2)-dimensional subspace along the
edge so that the position dependencesoifs more compli-
cated. Apart from modifications of the eigenmode spectrum
caused by different boundary conditions we follow the deri-
vation of G for a wedge as given in Reff20].

A. Mean-field theory

Starting from the formal definition G(r;r")
=[om(r)/sh(r")]n=0, wherem(r) denotes the order pa-
rameter profile anti(r) is an external spatially varying field,
we obtain

—AG(r;r")+6m2(r)G(r;r')y=8(r—r’) 4.1
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at the critical point and within mean-field theory. For  S(p:r,6;r’,6")
=(r,0,x) we apply a Fourier transform with respectxp

and defineS(p;r, 0;r’,6") by [20] 2 7l J (k) (kr’)
Dl I L4
G(I’,H,XH;I",G',X‘D @ n=3 Jo K°+p
dd—2p 2 ” ,
:fWS(p;r,a;r’,g’)exqip.(x—Xi)]_ (42) :; nza I\/}\_r](pr<)K\/ﬁ(pr>)lpn(6)¢n(0 ): (46)
o

. Eas.(4.1) and (4.2 and b , (a1 wherep=|p|, r-=min(r,r'), andr- =max(,r’). In order to
rom Egs.(4.1) and (4.2) and by usingm(r) =C(6;a)r determine the decay of the two-point correlation function in

[see Eq(3.3], one obtains real space we insert Eq4.6) into Eq. (4.2), and proceed
2 14 12 5 along the lines described in R¢R20]. The decay ofc away
N S L p2|st —[C(6: )]3S from the edge is governed by the critical exponent («)
[arz ror 122 P 2 Lefa)] according to
1 , , 1
:F6(r—r )5(0—0 ) (43) G(I’,G,X”;I"—WO,H’,XH’)N (47)

(r/)d72+ 7 (@)’

We solve Eq(4.3) in terms of eigenfunctions to a spectrum g4 as in Ref[20] we find from Eq.(4.2) that in the limit
E of eigenvalues for the operator on the left-hand side of Eqy '/ _, o the smallest eigenvalue in the spectr{in} deter-
(4.3). Each eigenfunction can be written as a product of gpines the exponent,, (). With the notation used in Ap-
radial partR(r) and an angular pary(6). For the shifted pendix B the smallest eigenvalue Js and in accordance
spectrunkzz E—p? the corresponding eigenvalue equations,,ith Ref. [20], we find 7, (a)=X5. Along the edge, i.e.,
are given by in the limit [x;— x| —2 for r,r'>0 the decay of5 is gov-

R+ IR+ (k2= At~ DR,(1)=0 (4.4 erned by the critical exponeni(«) according to

and G(r,0,x;r",0" ,X|—o)~ . (4.8
( [ [ ) |XH—Xﬁ|d_2+ 7g)(a) 48
i . 2 —
Yn(6) +6LC(6; ) () =Nntn(6), (4.5 In agreement with the general scaling relation
where Eq.(4.4) is a Bessel equation with parameterand 7+ ne)( @)
Eq. (4.5 is a Lameequation. In general the discrete eigen- Ner (@)= — 2<d=4, (4.9

values\,, cannot be given in closed forigsee Appendix B

for detailg. Apart from the specific spectrug\,} and the we find »g(a)=27 (@) within mean-field theory(for
corresponding eigenfunctiofg,,} one can represent the so- which »=0). From the approximate evaluation of the spec-
lution of Eq. (4.3 in the same form as in Ref20], i.e., trum{\,} [see Eq(B6) in Appendix B| we obtain

37 da 2a? g2(a)
ﬂeL(a):\/ij\/l—Qé‘(a/Z)'i'W 7T2+ Waz—Zgz(a/Z) (41@

where{(u) is the Weierstrasg function[see Eq(A9)] and 7., («) increases monotonically ag decreases. This im-
plies that at the normal transition the correlation function

4K2()[1-KX(a)] 4 decays more rapidly away from an edge<( ) than away
Os(a)= YR 3 (4.1  from a planar surfaced= ).
[1-2k%(a)] Finally, we note that from the general scaling relation for

the edge exponent
[see Eq{B1)]. In the limit «— 7r corresponding to a planar

surface Eg.(4.10 becomes exact and one obtaing

=, (7m)=3 in accordance with the mean-field result for v[d—2+ g (a)]
the semi-infinite geometry at the normal transit[dg]. The Bela)= 2 ’
dependence ofy,, on « is displayed in Fig. 5 fod=2 [see

Eqg. (4.16 in Sec. IV B| and 4[see Eq.(4.10], where the

overall 1&x dependence has been split off. The estimate fowhich describes the singular temperature dependence of the
d=3 is obtained by interpolating linearly between the curvesorder parameter at the edge, within mean-field theory one
for d=2 and 4 (compare Figs. 2 and)3The exponent has[see Eq(4.9), herep=0 andv=1/2]

2<d=<4, (4.12
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FIG. 5. Universal dependence of the edge expomgn«a) [see
Eq. (4.7)] on the opening angla, with the overall 1& dependence
split off. The curve ford=3 shows the linear interpolation between
the exactly known curves fat=2 [see Eq.(4.16] andd=4 [see
Eqg. (4.10]. The dot fora/m=1 shows the known valug, =(7
+ 7)/2=2.518 corresponding to a planar surfaceds 3. The
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=2 the edge consists of a single point so that one cannot
define correlations along the edge. However, if we formally
defineng(a) by Eq.(4.9 we find 7¢(a) = (m/a) 7. From
B1=2 [36] we obtain» =4 at the normal transition within
the Ising universality class, which implidsee Eq.(4.12);
herev=1]

e|(@) _ 27

5 d=2

Bela)= (4.1

o

for the edge exponent of the magnetization. We note Baat
given by Eq.(4.17) is four times larger than its correspond-
ing value at the ordinary transitidr20—22.

V. SUMMARY

We have investigated the universal local properties of the
order parameter profile in a wedge with opening anglsee
Fig. 1) for the normal transition. We have obtained the fol-
lowing main results.

small difference between the dot and the value of the interpolated (1) NearT the order parameter is determined by univer-
curve ford=3 is a measure of the uncertainty associated with thes@l scaling functions and the two nonuniversal bulk ampli-

aforementioned linear interpolation scheme.

1+ 7e (@)
2 1

d=4.

Bela)= (4.13

In the limit a— 7 corresponding to a planar surface Eq.
(4.13 yields B.(7)=B1=2, in accordance with the general
scaling relations,=dv for 2<d=<4 at the normal transition
for the semi-infinite geometr}36].

B. Exact results ind=2

In d=2 rigorous results for the edge exponepy («)

tudesa and &, [see Eq.(2.3)]. At T, the order parameter
profile reduces to a power law #'” in radial direction mul-
tiplied by a universal amplitude function depending on the
polar angled and the opening angle [see Egs(2.6) and
(2.10]. The amplitude function is symmetric around the
midplane and diverges a& #'* upon approaching the sur-
faces forming the wedglesee Eq(2.13)].

(2) We have determined the universal amplitude function
C(0,a) within mean-field theory, i.e., for space dimension
d=4 [see Egs(3.5 and (3.6)], where the order parameter
profile in the wedge and fof =T, can be obtained from the
order parameter profile in the film geometry for< T, [see
Eq. (3.4)]. In conjunction with exact results =2 [see Eq.

can be obtained starting from the correlation function in the3.24)] we construct an estimate fal( 8, «) for d=3 (see

half-plane at the normal transitigd9]
(X_Xr)2+y2+y12
yy

(4.14

!

G(x,y;x",y ) =(yy')~ ”’29(

wherex andx’ are the coordinates of the two points along limit «— 7 [see Eqs(3.10 and(3.27] and diverges-a~

the surface, ang andy’ are their distances from the surface

Fig. 2.

(3) The amplitude function determines the meniscuslike
contour lines of a constant value of the critical order param-
eter profile[see EQq.(3.7) and Fig. 1. The deviationAr of
the contour line relative to its asymptotémpare Fig. 1
from the corner of the wedge vanishes linearly in the pllanar

for a—0 [see Eqgs(3.11) and (3.28]. Figure 3 presents an

[49]. Applying the conformal mapping and carrying out the estimate of the functiodr(«) for d=3.

limit r’/r—c at fixedr>0 leads to
a\ 7 N
—) sm(—a’)
o o

( ,) 7]/2( ) -y 1(2a)
X(rr’)—

(m—m12
G(r,0;r',0")~

(T
sm(—e
o

r!

r

(4.195

for the correlation function in the wedge. From EHg.15
one can read off the scaling relatip49]

7

Ner (@)= > (4.1

N

a
+ —
02

(4) The contour lines approach their asymptotesya$
for increasing lateral distange[see Fig. 1 and Eq3.20].
This follows from an analysis of distant-wall corrections in
terms of the stress tens@ee Sec. Il ¢ The explicit results
for d=2 and 4 allow one to construct an estimate for the
corresponding behavior id=3 (see Fig. 4.

(5) The decay of the two-point correlation functionTt
away from the edge and parallel to the wedge is governed by
the critical edge exponentg,, («) and n(«), respectively
[see Egs(4.7) and (4.8)]. They fulfill the scaling relation
ne (@) =[ 7+ n¢)(@)]/2 with the bulk exponent;. Based
on the quite accurate estimate dr=4 [see Eq.(4.10 and
Appendix B| and the exact result id=2 [see Eq.(4.16)]
Figure 5 presents an estimate faf, («) in d=3. Equations

In the limit «— 7r corresponding to a planar surface one hag4.13 and(4.17) provide the critical edge exponefit(«) of

ner () =(n+ n)/2=n, , as expectefsee Eq.(4.9]. In d

the order parameter for the normal transition. Equat#)
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gives the full structure factor for the wedge geometry and for k2 ) k?(4+Kk?) . K2(16+ 44k%+k*) .
T=T, within the mean-field approximation. dn(u;k)=1— S u™ ——u"— 6
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. am(u;k)
ich 237. =f V1-K?sirfede (A7)
0

APPENDIX A: ELLIPTIC FUNCTIONS

E(arr(u;k),k)=J’0u dr(x;k)dx

between the incomplete elliptic integral of the second kind

Here we summarize a few properties of elliptic functionsE(X,k) and the delta amplitude da(k). E(k)=E(m/2k) is
as far as they are needed for the derivation of the resultg,q complete elliptic integral of the second kind.

obtained in this paper. For further information we refer to the A5 demonstrated in Appendix A of Refi41] the mean-

literature (see, e.g., Refg.50-52). The properties of the  fie|q order parameter profile can be obtained from the obser-

Jacobian elliptic functions can be derived starting from theation that[C(8;a)]? is a Weierstrasg function up to an
Jacobi amplitude am( k) which is implicitly defined by the  gqgitive constant. The Weierstragsfunction is an elliptic

incomplete elliptic integral of the first kind: function which is related to squares of certain Jacobian ellip-
tic functions[50,51]. It solves the differential equation

[p'(U)]?=4p3u)—gop(U)—0s, (A8)

am(u; k) dQD
0 J1-KZsirfe

The complete elliptic integral of the first kind=K(k) is
defined by am;k) = /2. For the derivation of Eq3.10
we quote the expansion &f(k) in powers of the moduluk:

u= (A1)
whereg, andgs are the invariants of. Note that no term
quadratic inp appears on the right-hand side of E&S8).
This condition determines the additive constant in the rela-
tion betweeny andC? which appears as the “potential” in
the eigenvalue problem in EG4.5). For the derivation of the

K(K)= T 1+ Ek2+ 3k4+ O(K®)|. (A2)  spectrum{\ .} (see Appendix Bthe Weierstrasg function
2|7 4 64 is also needed. It is the negative integralis) and can be
written as
From the first derivative of Eq/A1) with respect tou, for
k?<1 one obtains the relation 1 u 1
5(“)ZG‘JO p(2)=—|dz. (A9)

dn(u;k)Eaiarr(u;k)=\/1—kzsnz(u;k) (A3)

u Note that{(u) is not an elliptic function. For the explicit

calculation of the spectrudi ,} we finally quote the Laurent
for the delta amplitude dumk) using the standard notations series ofyp (u) and ¢(u) aroundu=0:

sn(u;k)=siMam(u;k)], cn(u;k)=cogam(u;k)]. 1
1 : ? ](A4) é(U)=a—g—éu3— 1971)u5+0(u7), (A10a)

Due to am(0k) =0 and amK;k)= /2, one has

1 9 5 9, 6
(@(U)——2+§)U +2—8U +0(u®). (A10b)
sn0;k)=0, cn0;k)=1, dn0;k)=1, (A5a) u

snK;k)=1, cnK;k)=0, dnK:k)= [1—K2. APPENDIX B: EIGENMODE SPECTRUM

(ASD) The spectrum of the eigenvalue problem defined by Eqg.

(4.5) can be determined along similar lines as in Appendix B
of Ref. [41]. The Weierstrass function associated with
C(e;za) [see EQ.(3.5] can be written in the formp(6)
=C“(0;a)—a, wherea is a constant to be determined.
snu:k) =u— 1+K? u3 1+14k2+k4u5 Based on Eq(3.4) we aim at obtaining a differential equa-
3! 5! tion for ¢ which is of the form given by Eq(A8). This
141352+ 1354+ Kb requirement is fulfilled ifa=1/3, which results in

7!

The derivation of Eq(3.17) is based on the Taylor expan-
sions

u’+0(ud),

21

2K dn(2K 6/ a:k)
3 (Bla)

PO)=| o SH2K ol k)

(A6a)
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_AKH(1-K) 4 _(nw)z 12
%=1 ai7 T 3 (B1lb) «= % 11 e al(al2)
_ 36 g .
g3=%+% 616 ~ G (adlal2) - eat| +on 6)]; (86)

) _ _ \n=€,+ 2 yields the desired spectrum.
The eigenvalue problem in E¢4.5 can now be castinto a  The allowed mode numberscan be obtained by consid-

Lame equation[52] ering the special case= 7 corresponding to a planar sur-
, face, for whichC(#; )= 1/sind and Eq.(4.5 can be solved
= n(0)+6p(0) h(0) = €nihn(0), (B2)  in closed form. For the present problem the Weierstiass

. _ o function can directly be derived from Eq#\9) and(B1), so
wheree,=\,—2. As discussed in Appendix B in Rg#1], that

the eigenvalue spectrum is given by the solution of the two

. 2K [ dn(2K 6/ a; k)
equations _h .
£(0) @ | sn2Kolak) cn(2K 0/ a;k)
2a,l(al2)—a| (a )+ﬂ =ni, (B3a) k?—2 2K
" " 2p(an) — €3 ’ +E@m2K 6/ a;k) k) + — 70}, (B7)
B en—2793 ap  With K=K(k) as defined in Appendix A. EquatiaiB7) ex-
9 (@n)= 2792—963' (B3b) plicitly demonstrates thaf( 8) is not an elliptic function. At
the midplanef= «/2, Eq.(B7) reduces tdsee Eq.(A5)]
The mode numbers are integergsee below and a,, are 2K (K) K2—2
auxiliary parameters with the propery— 0 for n—. For {(al2)=— E(k)+ K(k)|. (B8)
largen, Eqg. (B3) can be solved asymptotically by using the @ 3

expansions quoted in EqA10). From the expansion for according to Eq.(3.5b the special case= corresponds

(ay) for largen we obtain to k=0 for which ¢(#/2)= /6 from Eq.(B8) andg,=4/3
from Eq.(B1). From Eq.(B6) we infer thate,=n?—2, i.e.,
€n=— Ez 1+ EaﬁJro(aﬁ) , (B4) )\n=. n?, whiqh is indeed_ the corrgct eigenvalue spectrum for
ap 540 C(6;m)=1/sing. The eigenfunctions are normalizable for
n=3. Therefore\; is the lowest eigenvalue for this prob-
which implies the expansion lem.

For a numerical solution of E4B3) using, e.g., the New-
ton method the asymptotic spectrum given by EBg) for
n=3 provides excellent initial values for the iteration. In
fact, these initial values already are within 0.1% of the exact
Equation (B5) can be solved with the ansa&,=3ai/  spectrum even for the ground state=3 if 0.1<a/7w<1.
(nm)[1+An 2+Bn *+0(n"%]. Inserting the solution This implies that the mean-field expression fgy; («) given

2 /2 3 92 4 o 5_nq-ri B5
;Z(a )an a et (an)_T- (B5)

into Eq. (B4) leads to by Eg.(4.10 is quite accurate it is not too small.
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